Abstract

Decay heat removal is a key safety and design issue for the Generation IV gas (helium)-cooled fast reactor. This paper investigates the natural convection capability of the dedicated DHR loops under depressurized conditions while injecting a heavy gas into the system. Investigated is a loss-of-coolant accident using the TRACE code. The goal of the study is to improve fuel/cladding temperature behavior during LOCA transients with the enhancement of passive safety by operation in natural convection only, while accepting 10 bar back-up pressure in the guard containment. The paper investigates the cooling capabilities of different heavy gases. Furthermore, different injection locations and mass flow rates have been tested, in order to address possible core-overcooling problems resulting from rapid depressurization of the gas reservoir. It has been shown that, among the gases investigated, CO 2 is the best choice from the thermal-hydraulics viewpoint, being able to cool the core satisfactorily for a broad range of injection rates. N 2 can be envisaged as an alternative solution in case of chemical problems with CO 2. Supplementary studies carried out for the CO 2 and N 2 injection cases include that of the sensitivity to the number of available DHR loops and to the LOCA break-size. The effect of the resulting neutron spectrum changes on the shutdown-reactivity margin has also been investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.