Abstract

The electrical properties of p-type Mg-doped GaN are investigated through variable-temperature Hall effect measurements. Samples with a range of Mg-doping concentrations were prepared by metalorganic chemical vapor phase deposition. A number of phenomena are observed as the dopant density is increased to the high values typically used in device applications: the effective acceptor energy depth decreases from 190 to 112 meV, impurity conduction at low temperature becomes more prominent, the compensation ratio increases, and the valence band mobility drops sharply. The measured doping efficiency drops in samples with Mg concentration above 2×1020 cm−3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call