Abstract

Heavy-atom-free triplet-triplet annihilation (TTA) upconversion sensitized by a thermally activated delayed fluorescence (TADF) molecule is investigated in a dried gel made of a photo-cross-linked polymer as the solid-state matrix. The upconversion fluorescence quantum yields, ΦUC, of the solid-gel TTA system at different penetration depths are measured accurately based on a developed internal-reference method. It is found that ΦUC is greatest at the surface and then decreases exponentially with increasing depth, influenced by the substrate absorption. The same process is also performed in a TTA solution at different depths, but a completely different result is obtained; there is little difference for ΦUC. To the best of our knowledge, this is the first time the quantum yields at different transmission depths have been mentioned and calculated experimentally. These results illustrate the importance of accurately measuring the quantum yield of solid-phase TTA upconversion and provide a novel way to improve the solid-phase TTA quantum yield by reducing the thickness of the substrate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call