Abstract
Spin-orbit, charge-transfer intersystem crossing (SOCT-ISC) can directly overcome the disadvantages of the traditional heavy-atom effect and improve the generation efficiency of reactive oxygen species (ROS). Since orthogonal molecular orbitals of donor-acceptor (D-A) pairs favor the SOCT-ISC transition, herein aza-borondipyrromethenes (aza-BODIPYs) with 1,7-di-anthracyl groups (An-azaBDP) was successfully prepared, owing to steric hindrance to produce a big dihedral angle between the two molecular orbital (MO) planes. Moreover, according to density functional theory (DFT) and time-dependent density functional theory (TDDFT), the energy difference between the S1-T1 orbitals of An-azaBDP is small and more inclined towards ISC. An-azaBDP can effectively generate singlet oxygen under light irradiation. An-azaBDP with light irradiation can induce apoptosis in SW620 cells, and can serve as a potential candidate for the treatment of cancer cells and tumors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.