Abstract

This work makes a theoretical study of the dynamics of emergent elemental excitations in artificial spin ice systems with hexagonal geometry during the magnetic reversion of the system. The magnetic and physical parameters of the nanoislands that form the array are considered as variables in the study. The parameters considered are: the energy barrier for the inversion of each nanoisland, the magnetic moment of the nanomagnets and the possible disorder in the sample. Our results show that the reversion dynamic presents two distinct mechanisms of magnetic reversion, with different elemental excitations for each mechanism. The first mechanism presents a reversion with the appearance of magnetic monopoles that do not move in the samples (heavy monopoles) and the absence of Dirac chains. In the other mechanism elemental magnetic excitations (light monopoles) appear that move great distances in the sample, giving rise to extensive Dirac chains during the magnetic reversion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.