Abstract

This paper deals with topology optimization based on the Heaviside projection method using a scalar function as design variables. The scalar function is then regularized by a PDE based filter. Several image-processing based filtering techniques have so far been proposed for regularization or restricting the minimum length scale. They are conventionally applied to the design sensitivities rather than the design variables themselves. However, it causes discrepancies between the filtered sensitivities and the actual sensitivities that may confuse the optimization process and disturb the convergence. In this paper, we propose a Heaviside projection based topology optimization method with a scalar function that is filtered by a Helmholtz type partial differential equation. Therefore, the optimality can be strictly discussed in terms of the KKT condition. In order to demonstrate the effectiveness of the proposed method, a minimum compliance problem is solved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.