Abstract

Marine heatwaves, prolonged high-temperature extreme events in the ocean, have increased worldwide in recent decades. Plastic pollution is widespread in the ocean, and the continuous weathering of plastics leads to a substantial release of nanoplastics (NPs). However, the interactive impacts and in-depth mechanisms of heatwaves and NPs on diatoms are largely unknown. Here, we show that a heatwave intensity of 4 °C amplified the toxicity of polystyrene NPs to the globally important diatom Chaetoceros gracilis (C. gracilis), with reductions of 5.62% and 9.46% in growth rate and photosynthesis, respectively. Notably, NPs significantly inhibited the cell-specific C assimilation rate by 18.28% under heatwave conditions. The enhanced NP-induced toxicity to C. gracilis was attributed to decreased mechanical strength and increased NP adsorption under heatwave conditions, which increased membrane damage and oxidative stress. Transcriptomic analysis demonstrated that NPs disturbed redox homeostasis and caused mechanical stress to C. gracilis under heatwave conditions. Moreover, NP treatment downregulated genes (psbA and rbcL) encoding photosynthesis core proteins and the pivotal carbon-fixing enzyme RubisCo under heatwave conditions, resulting in decreased growth and C fixation rates. These findings demonstrate that heatwaves render C. gracilis susceptible to NPs and emphasize the reduced primary productivity caused by NPs under global warming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.