Abstract

Phase shift is characterized by an abrupt change in the structure of a community in response to a disturbance that can break its resistance, displacing it from its natural variation. This phenomenon has been recognized in several ecosystems and often points to human activities as the main cause. However, reactions of shifted communities to anthropogenic impacts have been less studied. In recent decades, heatwaves resulting from climate change have strongly affected coral reefs. Mass coral bleaching events are recognized as the main cause of coral reef phase shifts on a global scale. In 2019, an unprecedented heatwave hit the southwest Atlantic Ocean causing mass coral bleaching in non-degraded and phase-shifted reefs of Todos os Santos Bay, at an intensity never recorded in a 34-year historical series. We analyzed the effects of this event on the resistance of phase-shifted reefs, dominated by the zoantharian Palythoa cf. variabilis. Using benthic coverage data from 2003, 2007, 2011, 2017, and 2019, we analyzed three non-degraded reefs and three phase-shifted reefs. We estimated the coverage and bleaching of corals and P. cf. variabilis on each reef. There was a reduction in coral coverage in non-degraded reefs before the 2019 mass bleaching event (i.e., heatwave). However, there was no significant coral coverage variation after the event and the structure of non-degraded reef communities did not change. In phase-shifted reefs the coverage of zoantharians did not change significantly before the 2019 event, however, after the mass bleaching, there was a significant reduction in the coverage of these organisms. Here we revealed that the resistance of the shifted community was broken, and its structure was altered, indicating that reefs in this condition were more susceptible to bleaching disturbance than non-degraded reefs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call