Abstract

In the recent research years is observed huge interest in design of new functional nanomaterials for developing new electrocatalysts for oxygen reduction reaction (ORR) in acid and alkaline media. The research has been focused on developing carbon nanostructures materials with the different transition metals (e.g. Co, Ni, Ag, Au, Cu, Mn) analogue of polynuclear Prussian Blue for fuel cell applications. Electrocatalysts based on graphene and graphene-oxide (GO) are more homogeneous and possess properties such as excellent conductivity, good chemical stability and can be functionalized in a controlled manner. Following the heat-treatment step at higher temperatures, some thermal decomposition of the cyanometallate network occurs and, consequently, metallic sites are generated. Their formation and distribution are facilitated by the voltammetric potential cycling in acid and alkaline electrolytes. The most promising electrocatalytic results with respect to the reduction of oxygen (the highest currents and the most positive electroreduction potentials) have been obtained when carbon nanostructures materials are combined with transition metal hexacyanometallates. An electrocatalytic system, that utilizes transition metal hexacyanometallates nanoparticles modified carbon nanostructures materials (e.g. reduced graphene oxide, carbon nanotubes), is developed and characterized here using transmission electron microscopy and such electrochemical diagnostic techniques as cyclic volammetry and rotating ring-disk voltammetry in a 0.5 M H2SO4 electrolyte and in a 0.1 M KOH electrolyte and upon introduction (as cathode) to the low-temperature hydrogen-oxygen fuel cell. Comparative measurements have been performed against the model noble metal (Vulcan-supported platinum nanoparticles) catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.