Abstract

We present new Nusselt-number (Nu) measurements for slowly rotating turbulent thermal convection in cylindrical samples with aspect ratio Γ=1.00 and provide a comprehensive correlation of all available data for that Γ. In the experiment compressed gasses (nitrogen and sulfur hexafluride) as well as the fluorocarbon C_{6}F_{14} (3M Fluorinert FC72) and isopropanol were used as the convecting fluids. The data span the Prandtl-number (Pr) range 0.74<Pr<35.5 and are for Rayleigh numbers (Ra) from 3×10^{8} to 4×10^{11}. The relative heat transport Nu_{r}(1/Ro)≡Nu(1/Ro)/Nu(0) as a function of the dimensionless inverse Rossby number 1/Ro at constant Ra is reported. For Pr≈0.74 and the smallest Ra=3.6×10^{8} the maximum enhancement Nu_{r,max}-1 due to rotation is about 0.02. With increasing Ra, Nu_{r,max}-1 decreased further, and for Ra≳2×10^{9} heat-transport enhancement was no longer observed. For larger Pr the dependence of Nu_{r} on 1/Ro is qualitatively similar for all Pr. As noted before, there is a very small increase of Nu_{r} for small 1/Ro, followed by a decrease by a percent or so, before, at a critical value 1/Ro_{c}, a sharp transition to enhancement by Ekman pumping takes place. While the data revealed no dependence of 1/Ro_{c} on Ra, 1/Ro_{c} decreased with increasing Pr. This dependence could be described by a power law with an exponent α≃-0.41. Power-law dependencies on Pr and Ra could be used to describe the slope S_{Ro}^{+}=∂Nu_{r}/∂(1/Ro) just above 1/Ro_{c}. The Pr and Ra exponents were β_{1}=-0.16±0.08 and β_{2}=-0.04±0.06, respectively. Further increase of 1/Ro led to further increase of Nu_{r} until it reached a maximum value Nu_{r,max}. Beyond the maximum, the Taylor-Proudman (TP) effect, which is expected to lead to reduced vertical fluid transport in the bulk region, lowered Nu_{r}. Nu_{r,max} was largest for the largest Pr. For Pr=28.9, for example, we measured an increase of the heat transport by up to 40% (Nu_{r}-1=0.40) for the smallest Ra=2.2×10^{9}, even though we were unable to reach Nu_{r,max} over the accessible 1/Ro range. Both Nu_{r,max}(Pr,Ra) and its location 1/Ro_{max}(Pr,Ra) along the 1/Ro axis increased with Pr and decreased with Ra. Although both could be given by power-law representations, the uncertainties of the exponents are relatively large.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call