Abstract

We present a novel modeling methodology for optimizing the mass of aluminum-extruded heatsinks for cooling desk-top microprocessors. The two-stage study aims at reducing mass of an aluminum-extrusion heatsink by taking advantage of the existing thermal resistance margin. In Stage 1, we investigated several possible combinations of base shapes to minimize the mass of the base region. Base shape is optimized by dividing the base volume into several blocks of equal width, with the objective of progressively minimizing the mass of the peripheral region while shaping the middle region to minimize spreading resistance. Three base shape profiles—namely, wedge, semielliptical, and flat top—were selected for further study. In Stage 2, a thorough base, fin thickness, and fin count study was carried out by mathematical optimization. The result of this optimization exercise was a 30% reduction in the heatsink mass. The degradation in thermal resistance of the mass-reduced design is within the acceptable margin and meets microprocessor product specifications. Results are experimentally verified by testing four different competing samples having comparable optimized masses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.