Abstract

In the filamentous fungus Achlya ambisexualis, heat shock resulted in a rapid reduction in the rate of protein synthesis. This was accompanied by dephosphorylation of a prominent basic 30 kD protein associated with the small subunit of Achlya ribosomes and which may be analogous to ribosomal protein S6 of vertebrates. A large ribosomal subunit protein with a relative molecular weight (MW) of 24 500 exhibited increased phosphorylation during heat shock, while a second large subunit protein having a relative MW of 22 000 was dephosphorylated. Several proteins which could be dissociated from Achlya ribosomes by 0.5 M KCl also exhibited altered patterns of phosphorylation during heat shock. These KCl-soluble proteins included proteins at 50, 21, 20 and 19 kD, which exhibited decreased phosphorylation with heat shock and proteins at 32 and 23.5 kD, which exhibited increased phosphorylation with heat shock. Such alterations in the phosphorylation of components of the Achlya translational apparatus may be involved in the qualitative and quantitative changes in protein synthesis which are observed with heat shock in Achlya.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.