Abstract

Abstract This study investigates the heat-shock properties of metal-oxide films synthesized from ethylenediamine tetraacetic acid (EDTA) complexes using conventional flame-spray equipment. An EDTA·Y·H powder was placed in the feed unit of the sprayer and transported by a flow of oxygen to the gun. The powder was sprayed using a mixture of H2 and O2 as the flame gas, producing a layer of yttrium oxide on a stainless steel substrate. XRD analysis was used to examine the crystal structure of the deposits and SEM imaging revealed the surface and cross-sectional microstructure. A cyclic thermal shock test was conducted and the deposited film was analyzed for the existence of cracks, deformation, and delamination. Although the number of cracks, crack lengths, and cracks per unit area increased due to heat shock, delaminations were not observed. The results show that the Y2O3 films have high thermal-shock resistance and are suitable for use as thermal barrier coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call