Abstract

The catalyst for selective catalytic reduction of NOx at high temperatures is significantly demanded by current gas-fired exhaust purification. In this work, the complex oxides composed of two different structures of ZrO2-WO3 and WO3/ZrO2 with zirconium as the main component were prepared for NH3-SCR of NO at high temperatures by blending method and equal volume impregnation method, respectively. Combined with XRD, NH3-TPD, FE-SEM, BET and in situ DRIFTS characterization, the effects of component optimization of two kinds of ZrO2 and WO3 complex oxides on the performance for NH3-SCR of NO were mainly studied. The optimal compatibility of ZrO2 and WO3 complex oxides was determined, and the corresponding N2 selectivity and anti-interference ability of water vapor and SO2 were further investigated. Results showed that the performance of ZrO2-WO3 prepared by blending method for NH3-SCR of NO was significantly better than that of WO3/ZrO2 prepared by impregnation method. The ZrO2-WO3 containing 20% WO3 has the best performance in NH3-SCR of NO with NO conversion higher than 90% and N2 selectivity higher than 90% at 450–650 °C, and the performance was not affected by SO2, slightly affected by competitive adsorption of water vapor at 450 °C and not disturbed by water vapor above 500 °C. Further investigation showed that the NH3-SCR of NO over the ZrO2-WO3 reaction followed both L-H and E-R mechanisms. Characterization analysis revealed that ZrO2-WO3 has finer microscopic particles, larger specific surface area, higher acid amount and stronger acid strength than WO3/ZrO2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.