Abstract
Multilayer antireflection (AR) coatings require a material with a large and constant absorption coefficient over the whole visible range and thermal stability. Coatings for use in touch panel displays are also required to be electrically insulative. In this study, 60 mol % Ag-40 mol % (Fe1-xAlx)-O (x = 0, 0.25, 0.50, 0.75, and 1.0) thin films are prepared by pulsed laser deposition, and their optical properties, electric resistance, and thermal stability are clarified by combining the experimental data and density functional theory (DFT) calculations. Over the visible range, large and constant absorption coefficients are obtained for all compositions. The standard deviations of the absorption coefficients of the x = 0.75 and 1.0 samples are found to be smaller than those of conventional materials like graphite and CrOx. High sheet resistance (Rsheet > 107 Ω·sq-1) is also confirmed. It is determined that nanometer-sized Ag dispersed into a matrix, which was confirmed to be ionic Ag in the matrix phase, is responsible for the absorption at a shorter visible light range and insulative nature even at high Ag content. The films with high Al content are stable up to 500 °C. The potential of these black insulative Ag-Al-Fe-O thin films for use as black AR coatings is confirmed by optical simulations with multilayer stacks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.