Abstract

Graphene The shape of the Fermi surface in a conductor can be gleaned through quantum oscillations—periodic changes in transport properties as an external magnetic field is varied. Like most quantum properties, the phenomenon can usually be observed only at very low temperatures. Krishna Kumar et al. report quantum oscillations in graphene that do not go away even at the temperature of boiling water. Although “ordinary,” low-temperature quantum oscillations die away, another oscillatory behavior sets in that is extremely robust to heating. These resilient oscillations appear only in samples in which graphene is nearly aligned with its hexagonal boron nitride substrate, indicating that they are caused by the potential of the moire superlattice that forms in such circumstances. Science , this issue p. [181][1] [1]: /lookup/doi/10.1126/science.aal3357

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.