Abstract
Double diffusive convective flow of nanofluid within a porous trapezoidal cavity of various aspect ratios consisting of Al2O3 nanoparticle in the presence of applied magnetic field in the direction perpendicular to the parallel top and bottom walls is analysed. The side walls of the cavity are maintained at constant temperature and concentration while its horizontal walls are insulated and impermeable. The irregular physical domain of the problem is transformed to a regular unit square computational domain. The governing equations have been solved by second order of finite difference method (FDM). Based upon numerical predictions, the effects of pertinent parameters such as Rayleigh number, Darcy number, aspect ratio, solid volume fraction and inclination angle on the flow and temperature fields and the heat transfer performance of the enclosure are examined. It is found that the intensity of heat and mass transfer increases with the increase in the Darcy number and aspect ratio. It is also observed that as the solid volume fraction increases there is increase in the average Nusselt number but reverse effect is observed on the average Sherwood number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.