Abstract

Heat recovery from hot fluids in material processing industries is important for environmental and thermal management. Present work involves numerical visualization of heat flow in entrapped cavities filled with hot materials. The concept of heatline is used to visualize the heat energy trajectory. The system involves entrapped triangular cavities filled with hot fluid ( Pr = 0.015, 0.026, 0.7 and 1000). At low Rayleigh number ( Ra), it is found that the heatlines are smooth and perfectly normal to the isotherms indicating the dominance of conduction for both the triangles. As Ra increases, flow slowly becomes convection dominant. Multiple heat flow circulations with high intensity are formed within the lower triangular domain especially for low Pr numbers, whereas, less intense convective heat flow circulations are observed for the upper triangle. Multiple circulations are absent for both the triangular domains involving fluids with higher Pr numbers. It is observed that the heat transfer rates are monotonic for the upper triangle whereas a few local maxima in heat transfer rates occur for smaller Pr within lower triangular domain. Overall, fluid with any Pr may be useful for enhanced heat transfer within the upper triangle but fluid with high Pr may be preferred for the lower triangle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.