Abstract

We study heating rates in strongly interacting quantum lattice systems in the thermodynamic limit. Using a numerical linked cluster expansion, we calculate the energy as a function of the driving time and find a robust exponential regime. The heating rates are shown to be in excellent agreement with Fermi's golden rule. We discuss the relationship between heating rates and, within the eigenstate thermalization hypothesis, the smooth function that characterizes the off-diagonal matrix elements of the drive operator in the eigenbasis of the static Hamiltonian. We show that such a function, in nonintegrable and (remarkably) integrable Hamiltonians, can be probed experimentally by studying heating rates as functions of the drive frequency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.