Abstract
Nucleation kinetics of glass-ceramics is frequently determined using Tammann's double-stage heat-treatment. This method requires a complex deconvolution of the experimentally observed induction time (tind), i.e. the intercept of the linear part of the crystal number density curve with the nucleation time axis, into two components. In this paper, double-stage heat treatments were performed, with heating rates between the nucleation and development temperatures covering two orders of magnitude, in samples of a homogeneously nucleating glass-forming system, lithium disilicate. Our results show that tind increases with increasing heating rates with cubic root dependence. In accordance with the theory, tind was split into the intrinsic time required to establish a steady-state cluster size distribution, τ (time-lag) at the nucleation temperature and an incubation time (ti), which is a size, heating rate and development temperature (Td) dependent growth time. We demonstrate that the Collins-Kashchiev nucleation model performs poorly if ti is approximated by the time needed to experimentally detect the first crystal. In contrast, the Shneidman approach is consistent with theory. We found that at any given nucleation temperature, ti is a strong function of the heating rate, and is proportional to tind, whereas τ is a constant, as expected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.