Abstract

We propose a model describing the heating and ablation of a metallic target irradiated by a subpicosecond laser pulse. It takes into account the temperature equilibration between the electrons and ions and the density variation of the target material during the heating process. A simple analytical equation of state is developed, which allows one to calculate the total pressure in the heated layer for different electron and ion temperatures. The thermodynamic behavior of a nonequilibrium system is discussed, and nonequilibrium spinodals and cohesion limits are introduced. The model is applied for a description of the thermal ablation process driven by a sub-ps laser pulse. Aluminum and copper targets are considered, and it is shown that the dominant ablation process is due to breaking the nonequilibrium cohesion limit. The numerical results are in good agreement with recent experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call