Abstract

The removal of indoor/outdoor toluene by photocatalysis has drawn much attention due to its low energy consumption and easy availability. However, light inevitably generates heat, and pollutants desorb from catalysts as the temperature rises, which is not beneficial to degradation. Contrast to the frequently occurred phenomena, we firstly found that the adsorption capacity of UiO-66 (Zr) on toluene increased with increasing temperature as adsorption isotherms and in-situ Fourier transform infrared spectra (in-situ FTIR) showed. The optimum temperature was 30 °C. This stage in which adsorption capacity was positively correlated with temperature was called heating-induced adsorption, which achieved a toluene removal efficiency of 69.6 %. By density functional theory (DFT) calculations and changing the metal centers and organic ligands of UiO-66 (Zr) respectively, we disclosed that the heating-induced adsorption was mainly related to the π-π stacking interaction of MOF ligands and toluene. The analysis of samples before and after adsorption showed that the interaction between UiO-66 (Zr) and adsorbed toluene facilitated the charge transfer and prolonged the carrier lifetime, leading to the increase of hydroxyl radicals (•OH) in photocatalysis. Therefore, a synergistic effect between heating-induced adsorption and photocatalysis was proposed by analyzing the adsorption of toluene on UiO-66 (Zr) in detail. This work provided new viewpoint to understand the role of concomitant heat contributed to the adsorption and degradation of toluene during photocatalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call