Abstract

A pulsed 0.3 T magnetic field was used to heat and compress a low-temperature laser produced copper plasma. The magnetic field was generated using a planar 3-turn coil positioned 10 mm above the ablation spot. The plasma flowing through a central aperture in the coil was strongly focused. Inductive heating of the plasma caused a large enhancement of the overall visible light emission and the appearance of Cu II line emission. The plasma focusing is also evident in the constriction of the spatial distribution of deposited copper. The plasma heating and focusing can be explained in the framework of resistive magnetohydrodynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call