Abstract

The aim of this study is to prepare core–shell La0.73Sr0.27MnO3–silica nanoparticles and evaluating their heat generation ability under the safe alternating magnetic field (f = 100 kHz and H = 10–20 kA m−1) for potential applications in magnetic fluid hyperthermia and magnetically triggered drug delivery systems. The magnetic cores of La0.73Sr0.27MnO3 with an average particle size of 54 nm were synthesized by the citrate–gel method. Then, the Stober method was applied to encapsulate nanoparticles with 5-nm-thick silica shell. The core–shell structure of nanoparticles was confirmed by X-ray diffraction, fourier transform infrared spectroscopy and transmission electron microscopy analyses. Cytotoxicity of bare and silica-coated nanoparticles was evaluated by methyl thiazol tetrazolium bromide assay with MCF-7 cell line. The results revealed that the both samples have negligible toxicity below 500 μg ml−1 and silica coating can improve the biocompatibility of nanoparticle. In addition, calorimetric measurements were used to determine the heating efficiency of the core–shell nanostructures in aqueous medium. The results showed that the heat generated of the prepared sample could be safely controlled in the range of 40–60∘C which is suitable for biomedical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.