Abstract

The aim of this work was to investigate how the heat-induced gelation of micellar casein (MC)-plant protein mixtures in aqueous solution is affected by protein composition (MC/plant proteins = 100/0 to 0/100) and total protein content (4%, 6% and 8% w/w) at pH 5.8 and 6.0. Two types of plant proteins were used: soy proteins (SP) and pea proteins (PP). Storage moduli (G′) were measured during heating ramps from 20 to 90 °C and heat-induced gelation was characterised by a sharp increase in G′ at a critical temperature (Tc). The gel stiffness (Gel) was determined after 1 h at 90 °C and the microstructure before and after heating was investigated by confocal laser scanning microscopy (CLSM). Tc was found to increase with increasing the fraction of MC replaced by SP or PP, due to binding of calcium to the plant proteins. The effect was stronger for SP, which bound calcium more efficiently than PP. Tc decreased with decreasing pH, possibly caused by decreased electrostatic repulsion and increased calcium release from MC. Gel increased with increasing total protein content and did not depend significantly on the pH. Interestingly, Gel showed a minimum as a function of the plant protein fraction (40% for SP and 70% for PP) in the mixtures. It is concluded that MC and plant proteins did not co-aggregate in the mixtures during heating, and that each type of protein formed networks independently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.