Abstract

A water-soluble diblock copolymer was prepared from sodium 2-(acrylamido)-2-methylpropanesulfonate (NaAMPS) and N-isopropylacrylamide (NIPAM) via reversible addition−fragmentation chain transfer (RAFT) controlled radical polymerization. The RAFT “living” radical polymerization process of NIPAM using an NaAMPS-based macrochain transfer agent was confirmed by the fact that the number-average molecular weight increased linearly with monomer consumption while the molecular weight distribution remained to be narrow for the polymerization. The NIPAM block exhibited a lower critical solution temperature (LCST) in water. Both the NaAMPS and NIPAM blocks are soluble in water at room temperature. At temperatures above the LCST, the NIPAM blocks associated into a polymer aggregate. The polymer aggregate was assumed to be an elongated micelle or a multiple aggregate due to intermicellar association of the spherical core−corona micelles based on characterization data obtained from 1H NMR, turbidity, light scattering, ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call