Abstract

We introduce a new selected configuration interaction plus perturbation theory algorithm that is based on a deterministic analog of our recent efficient heat-bath sampling algorithm. This Heat-bath Configuration Interaction (HCI) algorithm makes use of two parameters that control the trade-off between speed and accuracy, one which controls the selection of determinants to add to a variational wave function and one which controls the selection of determinants used to compute the perturbative correction to the variational energy. We show that HCI provides an accurate treatment of both static and dynamic correlation by computing the potential energy curve of the multireference carbon dimer in the cc-pVDZ basis. We then demonstrate the speed and accuracy of HCI by recovering the full configuration interaction energy of both the carbon dimer in the cc-pVTZ basis and the strongly correlated chromium dimer in the Ahlrichs VDZ basis, correlating all electrons, to an accuracy of better than 1 mHa, in just a few minutes on a single core. These systems have full variational spaces of 3 × 10(14) and 2 × 10(22) determinants, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call