Abstract

Climate change leads to an increase in the frequency of temperature waves. To assess the impacts of temperature waves on cause-specific mortality rates, this study characterized the frequency and duration of heat waves and cold spells in the cities of Murmansk, Archangelsk, and Yakutsk in the period of 1999 - 2016. The relationships between mortality and temperature waves in these cities were estimated using three bioclimatic indices (dry bulb temperature, apparent temperature, wind-chill index). The relative predictive powers of these indices were compared. The main drivers of elevated mortality during such events were identified differentially by the cause and the age of death. Forty heat waves and thirty-seven cold spells were identified in these cities, using dry bulb temperature as an explanatory variable. Cardiovascular deaths mostly contribute to elevated total mortality rates during protracted exposures to extreme heat and cold. Heat-related health risks are more pronounced in the south of European Russia than in the Arctic cities. Cold-related risks are higher in the northern cities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call