Abstract

A hollow R.R. Moore rotation fatigue sample made of AISI 9310 is processed using vacuum carburization and high pressure gas quenching. The vacuum carburization schedule is designed to through carburize the thin wall section of the fatigue sample to 0.7% wt.% carbon, followed by 10 bar nitrogen quench. Some samples showed significant bow distortion after quench hardening, and further investigations indicated that the unbalanced wall thickness from machining is the main cause of the bow distortion. In this paper, DANTE, a commercial heat treatment software is used to study the cooling, phase transformation, and stress evolution during quenching. The effect of unbalance wall thickness on distortion is also investigated. Residual stress state in the quench hardened sample is critical to the fatigue performance during rotational bending fatigue tests. In this study, the unbalanced geometry has insignificant effect on the residual stresses after quench hardening. However, the unbalanced geometry will affect the applied stress significantly during a rotation fatigue test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.