Abstract

Steel is a particularly challenging material to semisolid process because of the high temperatures involved and the potential for surface oxidation. Hot-rolled X210CrW12 tool steel was applied as a feedstock for thixoforming. The samples were heated up to 1525 K (1250 °C) to obtain 30 pct of the liquid phase. They were pressed in the semisolid state into a die preheated up to 473 K (200 °C) using a device based on a high-pressure die casting machine. As a result, a series of main bucket tooth thixo-casts for a mining combine was obtained. The microstructure of the thixo-cast consisted of austenite globular grains (average grain size 46 μm) surrounded by a eutectic mixture (ferrite, austenite, and M7C3 carbides). The average hardness of primary austenite grains was 470 HV0.02 and that of eutectic 551 HV0.02. The X-ray analysis confirmed the presence of 11.8 pct α-Fe, 82.4 pct γ-Fe, and 5.8 pct M7C3 carbides in the thixo-cast samples. Thermal and dilatometric effects were registered in the solid state, and the analysis of curves enabled the determination of characteristic temperatures of heat treatment: 503 K, 598 K, 693 K, 798 K, 828 K, 903 K, and 953 K (230 °C, 325 °C, 420 °C, 525 °C, 555 °C, 630 °C, 680 °C). The thixo-casts were annealed at these temperatures for 2 hours. During annealing in the temperature range 503 K to 693 K (230 °C to 420 °C), the hardness of primary globular grains continuously decreased down to 385HV0.02. The X-ray diffraction showed a slight shift of peaks responsible for the tension release. Moreover, after the treatment at 693 K (420 °C), an additional peak from precipitated carbides was observed in the X-ray diffraction. Thin plates of perlite (average hardness 820 HV0.02) with carbide precipitates appeared at the boundaries of globular grains at 798 K (525 °C). They occupied 17 pct of the grain area. Plates of martensite were found in the center of grains, while the retained austenite was observed among them (average hardness of center grains was 512 HV0.02). A nearly complete decomposition of metastable austenite was achieved after tempering at 828 K (555 °C) due to prevailing lamellar pearlite structure starting at grain boundaries and the martensite located in the center of the grains. The X-ray analysis confirmed the presence of 3.4 pct γ-Fe, 84.6 pct α-Fe, and 12 pct M7C3 carbides. The dilatometric analysis showed that the transformation of metastable austenite into martensite took place during cooling from 828 K (555 °C). The additional annealing at 523 K (250 °C) for 2 hours after heat treatment at 828 K (555 °C) caused the precipitation of carbides from the martensite. After tempering at 903 K (630 °C), the thixo-cast microstructure showed globular grains consisting mainly of thick lamellar perlite of the average hardness 555 HV0.02.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.