Abstract

The loss of crystallins solubility with aging and the formation of amyloid-like aggregates is considered the hallmark characteristic of cataract pathology. The present study was carried out to assess the effect of temperature on the soluble lens protein and the formation of protein aggregates with typical amyloid characteristics. The soluble fraction of lens proteins was subjected for heat treatment in the range of 40–60 °C, and the nature of protein aggregates was assessed by using Congo red (CR), thioflavin T (ThT), and 8-anilinonaphthalene-1-sulfonic acid (ANS) binding assays, circular dichroism (CD), Fourier-transform infrared (FT-IR) spectroscopy, and transmission electron microscopy (TEM). The heat-treated protein samples displayed a substantial bathochromic shift (≈15 nm) in the CR's absorption maximum (λmax) and increased ThT and ANS binding. The heat treatment of lens soluble proteins results in the formation of nontoxic, β-sheet rich, non-fibrillar, protein aggregates similar to the structures evident in the insoluble fraction of proteins isolated from the cataractous lens. The data obtained from the present study suggest that the exposure of soluble lens proteins to elevated temperature leads to the formation of non-fibrillar aggregates, establishing the role of amyloid in the heat-induced augmentation of cataracts pathology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.