Abstract

This research determined the effect oxidation, as that occurs during porcelain firing, has upon the corrosion parameters of Pd-based ceramic alloys and how it may relate to Pd allergy. The 20 h open circuit potential (OCP), 20 h corrosion rate (Icorr), and anodic polarization (E-i) curves of 11 commercial Pd alloys were measured in a phosphate buffered saline solution. The alloys were divided into the following four groups based upon composition: PdGa(Ag), PdCu, PdAg, and AuPd and tested in both as-cast and oxidized conditions. In both the as-cast and oxidized conditions, the OCP of Ag-containing Pd alloys is significantly lower than non Ag-containing high-Pd alloys. The OCP of all alloys increased after oxidation. With regard to corrosion rate, the Ag-containing alloys showed a decrease in Icorr with oxidation. In contrast, three of the four non Ag-containing high-Pd (>or=74 wt%) alloys exhibited a higher Icorr. A comparison of the anodic polarization curves showed only the alloys containing larger amounts (>or=16 wt%) of Ag displayed a notable difference between as-cast and oxidized states. Oxidation as required during porcelain-fused-to-metal device preparation alters the electrochemical characteristics of the alloys studied. This alteration may be of importance with regard to their potential for Pd allergy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call