Abstract

ABSTRACT This study demonstrates the successful fabrication of a multi-material 18Ni(300) maraging steel – CoCrMo alloy using laser powder bed fusion (L-PBF), which in its as-built state, displays suboptimal mechanical performance. Addressing this, we propose different heat treatments that mutually enhance the properties of both alloys. Comparative analysis of texture development, precipitation sequence and mechanical properties of the dual structures at different scales has been conducted. The results indicate the cooperative strengthening of intragranular γ–ϵ transformation in CoCrMo, and Ni3Ti precipitation in maraging steel. Adding the solution treatment also balanced the formation of acicular Ni3Ti clusters with (Fe, Ni, Co)2(Ti, Mo) precipitates, and revealed that chemical segregation influences austenite reversion. Initial evidence of local grain variant selection has been revealed in as-built samples due to thermal cycling and austenite reversion, which generates residual stresses, recoil forces and convective flow. Surprisingly, the missing variants can also be inherited after heat treatment with insufficient solution temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.