Abstract

The main focus of this article is to examine the effects of heat transfer for a compressible time-dependent laminar flow pass the two distinctly positioned elliptic cylinders. The Mac number is chosen below 0.3 to keep the flow laminar. The heat transfer feature has been added and coupled with the laminar flow. The heat transfer feature adjusted for constant pressure. The arising Naiver-Stokes equations have been addressed numerically. The mesh has also been created and its entities have been elaborated statistically. The outcomes of velocity distribution, pressure distribution, 2D temperature plots, isothermal contours, drag coefficient, streamlines, and surface volume of fluid are discussed. The BDF technique has been employed to tackle the problem numerically. It was observed that the velocity profile at the boundaries of the elliptic cylinder has a maximum value, 3.85 m/s. The pressure distribution is observed maximum around elliptic cylinders. The heat transfer coefficient has maximum values at the upper and lower boundaries, the maximum temperature value observed is 290K. The isothermal contours, streamlines, and velocity volume were also studied. The drag coefficient is observed increasing but the drag force is decreasing. The mathematical modeling of the current problem has been designed in COMSOL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call