Abstract

In this paper, the effect of ferromagnetic barrier (FB) on the thermal conductance of graphene-based normal metal/ferromagnetic barrier/s- and d-wave superconductor junction has been studied theoretically. The results show that the exchange energy (h) in the ferromagnetic barrier has a strong effect on the amplitude, phase and period of the thermal conductance oscillations in terms of the FB length. Also, we have discussed novel thermal conductance oscillations in a graphene-based NFBS junction that happened for maximum superconducting orientation α=π/4. This finding is arisen from the quantum nature of interference between spin states, up and down quasiparticles in FB region. Interestingly, at α=π/4 the h has also the highest effect on the thermal conductance and by increasing the exchange energy h, the thermal conductance enhances at this angle. The exchange energy h also affects the thermal conductance as a function of temperature for both s- and d-wave superconductor. At last, we propose an experimental setup to detect our predicted effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.