Abstract

Deliquescent crystalline solids undergo the first order dissolution process of deliquescence when the environmental relative humidity (RH) exceeds the deliquescence point (RH0). The rate at which deliquescence occurs increases as the RH increases above the RH0 in compressed disks of select deliquescent ingredients; however, a kinetic model for the deliquescence of powdered crystalline food ingredients and blends thereof has not been published. The water vapor sorption rates of commonly used powder food ingredients (citric acid, sodium chloride, sucrose, fructose, sorbitol, and xylitol) and blends were determined using a multi-sample gravimetric moisture sorption analyzer. The water vapor sorption rate was dependent on sample radius, temperature, and sample composition. The heat transport model for the deliquescence of compressed disks was successfully extended to the powder ingredients and blends. Such results enable further understanding of fundamental theories of deliquescence and provide a useful tool in the prediction of water vapor uptake rate during deliquescence in controlled RH chambers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call