Abstract
We present experimental heat transport measurements of turbulent Rayleigh-Bénard convection with rotation about a vertical axis. The fluid, water with a Prandtl number (sigma) of about 6, was confined in a cell with a square cross section of 7.3 x 7.3 cm2 and a height of 9.4 cm. Heat transport was measured for Rayleigh numbers 2 x 10(5)<Ra<5 x 10(8) and Taylor numbers 0<Ta<5 x 10(9). We show the variation in normalized heat transport, the Nusselt number, at fixed dimensional rotation rate OmegaD, at fixed Ra varying Ta, at fixed Ta varying Ra, and at fixed Rossby number Ro. The scaling of heat transport in the range of 10(7) to about 10(9) is roughly 0.29 with a Ro-dependent coefficient or equivalently is also well fit by a combination of power laws of the form a Ra1/5+b Ra1/3. The range of Ra is not sufficient to differentiate single power law or combined power-law scaling. The data are roughly consistent with an assumption that the enhancement of heat transport owing to rotation is proportional to the number of vortical structures penetrating the boundary layer. We also compare indirect measures of thermal and Ekman boundary layer thicknesses to assess their potential role in controlling heat transport in different regimes of Ra and Ta.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.