Abstract

We discuss the problem of heat conduction in quantum spin chain models. To investigate this problem it is necessary to consider the finite open system connected to heat baths. We describe two different procedures to couple the system with the reservoirs: a model of stochastic heat baths and the quantum trajectories solution of the quantum master equation. The stochastic heat bath procedure operates on the pure wave function of the isolated system, so that it is locally and periodically collapsed to a quantum state consistent with a boundary nonequilibrium state. In contrast, the quantum trajectories procedure evaluates ensemble averages in terms of the reduced density matrix operator of the system. We apply these procedures to different models of quantum spin chains and numerically show their applicability to study the heat flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.