Abstract
Flow towards a rotating disk is of highly practical significance in numerous engineering applications such as Turbine disks, rotary type machine systems and many more. In light of this, the current work is an attempt to explore MHD oblique flow towards a rotating disk. Hydromagnetic effects in addition to heat transfer is taken into consideration. The flow governing Partial Differential Equations are altered to a system to coupled non-linear Ordinary Differential Equations through scaling group of transformations which afterwards are tackled using Shooting Algorithm. The impact of obliqueness parameter γ, rotation ratio parameter alpha and magnetic field parameter M on 2-dimensional and 3-dimensional stream contours are presented. Location of the shear center varies with magnetic field parameter. Heat flow at the disk surface boosts with magnet field parameter M and rotation ratio parameter alpha.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.