Abstract
<abstract> <p>A stable colloid called ferrofluid is made up of tiny magnetic particles, often magnetite (Fe<sub>3</sub>O<sub>4</sub>), that have been bonded with an amphiphilic dispersion layer and are then suspended in a suitable liquid solvent carrier. Current industrial uses for ferrofluid include dynamic sealing, inertial and viscous damping, magnetic drug targeting, liquid microrobots, etc. In this article, we studied the heat transfer and MHD micropolar ferrofluid flow caused by non-linearly stretching surface. The results are presented for hybrid alumina- copper/ethylene glycol (${Al}_2 {O}_3$-Cu/EG) nanofluid. The governing non-linear equations describing flow are transformed into a system of ordinary differential equations using similarity transformations. Using the BVp4c method, the microstructure and inertial properties of a magnetite ferrofluid across a non-linear stretched sheet are studied. The influence of relevant parameters on stream function, velocity, micro-rotation velocity, and temperature are obtained and represented graphically. The computed results are original, and it has been observed that if we increase the magnetic parameter, the stream function and the velocity decrease, while the temperature and micro-rotation velocity increase. As the Prandtl number increases, the temperature profile decreases. It has been observed that the Nusselt number or heat transfer rate of hybrid nanofluid is better as compared to nanofluid flow.</p> </abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.