Abstract
AbstractTo obtain the fullest picture of geothermal systems, it is necessary to integrate different types of data, for example, surface electromagnetic surveys, lithology, geochemistry, and temperature logs. Here, by joint modeling a multichannel data set we quantify the spatial distribution of heat transfer through the hydrothermally altered, impermeable smectite layer that has developed atop the Wairakei‐Tauhara system, New Zealand. Our approach involves first constraining magnetotelluric inversion models with methylene blue analysis (an indicator of conductive clay) and mapping these onto temperature and lithology data from geothermal wells. Then, one‐dimensional models are fitted to the temperature data to estimate heat flux variations across the field. As a result, we have been able to map the primary seal that insulates the geothermal reservoir and estimate the heat flow of the system. The approach could be applied in geothermal provinces around the world with implications for sustainable resource management and our understanding of these magmatic systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.