Abstract

In this paper, heat transfer characteristics of nickel coating over aluminium and mild steel are examined using jet impingement cooling. A rectangular sheet of dimension 10 cm × 3.5 cm × 0.1 cm taken as the test piece is coated with 4 g nickel acetate tetrahydrate precursor in the chemical vapor deposition (CVD) process for 85 mins. Heat transfer characteristics are studied on three layers of nickel coating (no coating, first coating, and second coating) with an impinging air-jet velocity of 3.5 ms−1 and 6 ms−1. The effect of Reynolds number, the thickness of the coating, jet velocity, distance from the stagnation point, and nozzle diameter on the heat transfer coefficient are investigated. The results show an increase in convective heat transfer characteristics with the Reynolds number, the thickness of the coating, and the nozzle diameter and a substantial decrease with deviation from the stagnation point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.