Abstract
AbstractRadiant floor cooling and heating systems (RHC) are gaining popularity as compared with conventional space conditioning systems. An understanding of the heat transfer capacity of the radiant system is desirable to design a space conditioning system using RHC technology. In the present work, a simplified heat flux model for RHC is developed for both cooling and heating modes of operation. The Artificial Neural Network (ANN) technique is used for the development of the simplified model. Experimental data from literature covering a wide operating range of the RHC is considered for model development and validation. Operating parameters such as mass flow rate (mf), heat resistance (Rs), mean temperature of water flowing through the pipe (Tm), and operative temperature (Top) are considered independent variables influencing the heat flux (qt). The neural network consists of four input layers, one output layer, and one hidden layer with a feed‐forward‐back‐propagation algorithm. A study on the selection of the optimum number of neurons in the range of 1–9 for the hidden layer is also performed. On the basis of the performance parameters, namely, average‐absolute‐relative‐deviation (AARD = 0.11283) percentage, mean‐square‐error (MSE = 0.00055), and the coefficient of determination (R2 = 0.9984), a hidden layer is modeled with five neurons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.