Abstract

This study presents an enhancement in the heat transfer performance of a glass thermosyphon using graphene–acetone nanofluid with 0.05%, 0.07%, and 0.09% volume concentrations. The heat load is varied between 10 and 50 W in five steps. The effect of heat load, volume concentration, and vapor temperature on thermal resistance, evaporator and condenser heat transfer coefficients, are experimentally investigated. A substantial reduction in thermal resistance of 70.3% is observed for the maximum concentration of 0.09% by volume of graphene–acetone nanofluid. Further, an enhancement in the evaporator heat transfer coefficient of 61.25% is observed for the same concentration. Also from the visualization study the different flow patterns in the evaporator, adiabatic, and condenser regions are obtained for acetone at different heat inputs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call