Abstract

In the present study, the heat transfer performance and friction factor characteristics in a circular tube fitted with twisted wire brush inserts were investigated experimentally. The twisted wire brush inserts were fabricated with four different twisted wire densities of 100, 150, 200, and 250 wires per centimeter by winding a 1mm diameter of the copper wire over a 5mm diameter of two twisted iron core-rods. Heat transfer and friction factor data in tubes were examined for Reynolds number ranging from 7,200 to 50,200. The results indicated that the presence of twisted wire brush inserts led to a large effect on the enhancement of heat transfer with corresponding increase in friction factor over the plain tube. The Nusselt number and friction factor of using the twisted wire brush inserts were found to be increased up to 2.15 and 2.0 times, respectively, than those over the plain tube values. Furthermore, the heat transfer performance was evaluated to assess the real benefits of using those type of inserts and the performance was achieved 1.85 times higher compared to the plain tube based on the constant blower power. Finally, correlations were developed based on the data generated from this work to predict the heat transfer, friction factor, and thermal performance factor for turbulent flow through a circular tube fitted with the twisted wire brush inserts in terms of wire density (y), Reynolds number (Re), and Prandtl number (Pr).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.