Abstract

Heat and mass transfer induced by Marangoni forces occur frequently in crystal growth and heat pipes, especially in microgravity situations. Therefore, the heat and mass transfer optimization in the thermosolutal Marangoni boundary layer flow of a nanomaterial with cross-diffusion effects is carried out in this study. Thermal radiation, magnetic field, and cross-diffusion are also incorporated in the thermal phenomena. The flow fields with nanolayer and without it are compared. The nanoparticle interfacial layer aspect accounted for in the nanofluid model makes the modeling more realistic. The optimization procedure is based on the Response Surface Methodology (RSM) model that utilizes the face-centered Central Composite Design (fc-CCD). The external constraining factors of the system like thermal radiation, magnetic field, and nanoparticle loading are explored for interactive impacts. The sensitivity of the heat and mass transfer is scrutinized. The interfacial layer aspect leads to an enhanced magnitude of the temperature field whereas the effect on the concentration profile is negligible. The inclination of the magnetic field augments the flow profiles significantly. The highest sensitivity of the heat and mass transfer is towards the thermal radiation aspect. The optimized output of heat and transfer rate is estimated to be when R = 1.6639, M = 1, and ϕ = 1 % .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.