Abstract

Heat flux, wall heat transfer coefficients, and wall pressures are determined for high velocity flow of gas-solid mixtures in a converging-diverging nozzle. Flow separation accompanied with oblique shock formation occurs in the diverging section of the nozzle. The shock strength is reduced upon the addition of solid particles. The wall pressure in the convergent section of the nozzle appears unaffected by the presence of solid particles. In the divergent section, however, the wall pressure is slightly lowered. At the maximum ratio of solid to air flow used in the experiments (3.7) increases in the heat transfer rate of up to 20 and 50 percent are obtained in the convergent and separated (divergent) regions of the nozzle, respectively. Slightly larger increases in the wall heat transfer coefficients are also obtained. It is concluded that the wall heat flux and heat transfer coefficients are influenced strongly by the presence of disturbances upstream of the nozzle inlet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.