Abstract

The present study investigated the flow and heat transfer at a stagnation point past a stretching sheet. The premium silver nanoparticles Ag and economic alumina nanoparticles Al2O3 suspended in water to form Ag-Al2O3/Water hybrid nanofluid are numerically examined. The analysis started with transforming the mathematical model which is in non-linear partial differential equations to a more convenient form by similarity transformation approach before being solved numerically using the Runge-Kutta-Fehlberg (RKF45) method. The characteristics and effects of the stretching parameter, conjugate parameter and the nanoparticle volume fraction for Al2O3 and Ag on the variation of wall temperature, heat transfer coefficient and reduced skin friction coefficient are analyzed and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.