Abstract

A three-dimensional, unsteady heat transfer model has been developed for predicting the temperature field in partially-stabilized zirconia (PSZ) undergoing laser-assisted machining. The semi-transparent PSZ is treated as optically thick within a spectral band from approximately 0.5 to 8 μm. After comparing the diffusion approximation and the discrete ordinates method for predicting internal radiative transfer, suitability of the diffusion approximation is established from a comparison of model predictions with surface temperature measurements. The temperature predictions are in good agreement with measured values during machining. Parametric calculations reveal that laser power and feedrate have the greatest effect on machining temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.