Abstract

In this paper a thermal model of a pneumatic cylinder with an integrated pneumatic end cushioning is presented. Being a part of a multidomain model presented in former research, this model is needed to simulate and analyse the thermodynamic processes in the pneumatic end cushioning and to elaborate a novel design strategy for damping systems with a higher capability on kinetic energy absorption and robust performance under fluctuating operating conditions. For this purpose, a proper heat exchange model is inevitable to calculate the pressure in the cushioning volume and consequently the deceleration of the load. An approach of splitting the complex geometry of cylinder into simple geometries, such as plain or cylindrical surfaces, is used in this study for a fast computation of convective heat flow rates. To validate this approach, the simulation results were compared with the measurements, carried out at different supply pressures, piston speeds and end cushioning throttle openings. The model will be used further for sensitivity analysis and robust optimisation of the cushioning system design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.